
R Package Development
Albany R Users Group and CUNY MSDS

Jason Bryer, Ph.D.

March 1, 2022

Agenda

Overview of packages

Creating a package
Documenting a package
Testing a package
Building a package

Demo

Including Shiny apps in packages

Releasing packages to Github and CRAN

Conclusions / Additional Resources

2 / 38

Overview of R Packages

3 / 38

What is an R package?

R packages are the basic unit of sharing code, data, documentation, and tests. It is a
standardized format that allows for extending the R language. There are currently 18,994
packages listed on the Comprehensive R Archive Network. You are probably already using
packages, installed using install.packages (or remotes::install_github) and loaded using
library or require .

4 / 38

https://cran.r-project.org/

Setup

To develop R packages we are going to need some additional developer tools. This command will
install the packages necessary for package development:

install.packages(c('devtools', 'roxygen2', 'usethis', 'testthat', 'kntir', 'vdiffr'))

Windows users will need to have Rtools installed. It can be downloaded from here: https://cran.r-
project.org/bin/windows/Rtools/

Mac users need to have Xcode command line tools installed. Download Xcode from here:
https://apps.apple.com/us/app/xcode/id497799835?mt=12 Once installed, fun the following
command in the Terminal:

xcode-select --install

Linux users need to install the R development tools. If on Ubuntu, for example, install r-base-
dev . 5 / 38

https://cran.r-project.org/bin/windows/Rtools/
https://apps.apple.com/us/app/xcode/id497799835?mt=12

Creating an R Package

The usethis package provides a helper function that will initialize an R package for you.

library(usethis)

path <- '~/loess'

create_package(path)

proj_activate(path)

The result of above will create a new directory with the basic files for an R package. Additionally,
it will create a new RStudio project and open that project to begin editing.

6 / 38

.gitignore - anticipates Git usage and ignores some
standard, behind-the-scenes files created by R and
RStudio. Even if you do not plan to use Git, this is
harmless.
.Rbuildignore - lists files that we need to have
around but that should not be included when building
the R package from source.
DESCRIPTION - provides metadata about your package.
loess.Rproj - RStudio project file (note that this will
have the name specified in create_package).
NAMESPACE - declares the functions your package
exports for external use and the external functions
your package imports from other packages. Do not edit
this file directly.
R/ - Directory where your R functions will reside.

Package Structure

7 / 38

DESCRIPTION File

The DESCRIPTION file contains important metadata about your package. The following is the
default after creating your package with create_package() :

Package: loess

Title: What the Package Does (One Line, Title Case)

Version: 0.0.0.9000

Authors@R:

 person("First", "Last", , "first.last@example.com", role = c("aut", "cre"),

 comment = c(ORCID = "YOUR-ORCID-ID"))

Description: What the package does (one paragraph).

License: MIT + file LICENSE

Encoding: UTF-8

Roxygen: list(markdown = TRUE)

RoxygenNote: 7.1.2

The title and description are particularly important as this is what will show up in the listing on
CRAN if you publish there.

8 / 38

DESCRIPTION File (cont.)

For the author(s), use the person function which includes the following parameters: given, family,
middle, email, role, comment, first, last. Roles can include any of the following:

cre : the creator or maintainer, the person you should bother if you have problems. Despite being short for “creator”, this
is the correct role to use for the current maintainer, even if they are not the initial creator of the package.
aut : authors, those who have made significant contributions to the package.
ctb : contributors, those who have made smaller contributions, like patches.
cph : copyright holder. This is used if the copyright is held by someone other than the author, typically a company (i.e. the
author’s employer).
fnd : funder, the people or organizations that have provided financial support for the development of the package.

There are other fields (described here) that may useful. The URL and BugReports are two
common fields to add:

URL: https://github.com/jbryer/mypkg

BugReports: https://github.com/jbryer/mypkg/issues

9 / 38

https://r-pkgs.org/description.html#description-other-fields

Package License

The usethis package provides a number of helper functions to set the license for your package.
If you plan to publish your package to CRAN, you must have a license. But even if you publish
only to Github providing a license helps other useRs know the rules for using your package.

ls('package:usethis')[grep('_license$', ls('package:usethis'))]

[1] "use_agpl_license" "use_agpl3_license" "use_apache_license" "use_apl2_license"

[5] "use_cc0_license" "use_ccby_license" "use_gpl_license" "use_gpl3_license"

[9] "use_lgpl_license" "use_mit_license" "use_proprietary_license"

See https://choosealicense.com for more information on how to choose a license.

10 / 38

https://choosealicense.com/

Package Dependencies
It is very likely your package will require other packages to work. There are several ways you can determine the level of
requirement for the dependency package.

Imports - packages that needed for your package to work.
Suggests - packages required for development or optional features.
Depends - prior to R version 2.14.0 this was the only way to specify other packages your package requires. It is generally preferred to use Imports or
Suggests now.
LinkingTo - packages listed here rely on C or C++ code in another package.
Enhances - packages listed here are enhanced by your package. Not commonly used so won't discuss here.

The use_package will add the specifications to the DESCRIPTION file. The NAMESPACE fill will also need to reflect what
packages need to be loaded (and what objects from packages specifically), however that is done using Roxygen tags
as described later.

usethis::use_package('ggplot2', type = 'Imports')

Occasionally call the use_tidy_description function to cleanup your dependency list to a common format.

See this section of R Packages for more details: https://r-pkgs.org/description.html

11 / 38

https://r-pkgs.org/description.html

Documenting with roxygen2

R documentation is located in .Rd files and uses a LaTeX style syntax for formatting. The
roxygen2 package provides two key features:

1. Allows documentation to be located next to the source code (so you don't have to edit Rd
files directly).

2. Allows documentation to be written in a more readable format using markdown. However, it
will sometimes be necessary to use LaTeX style markup for some features.

Roxygen will look for comments within the R files that begin with #'

(note the comment must start on the left margin).

We will cover the most common documentation features that will allow the package to pass a
CRAN check. See https://roxygen2.r-lib.org/articles/rd.html for much more info.

12 / 38

https://roxygen2.r-lib.org/articles/rd.html

First sentence is the title.
Second paragraph is the description which comes first
and should be brief.
The remaining paragraphs are the details which will
appear after the argument descriptions.

Titles and Descriptions

Each documentation block starts with some text that defines the title, description, and details of
the function or data. Here’s an example showing what the documentation for sum() might look
like if it had been written with roxygen:

#' Sum of vector elements

#'

#' `sum` returns the sum of all the values present in i

#'

#' This is a generic function: methods can be defined f

#' or via the [Summary()] group generic. For this to wo

#' the arguments `...` should be unnamed, and dispatch

#' first argument.

sum <- function(..., na.rm = TRUE) {}

13 / 38

Documentation Tags

Object documentation using Roxygen has a number of tags to identify key parts of the help
documentation. Most functions will have, at minimum, @param , @return , and @examples . And if it
is a function available to the end user, it will also have @export .

@param name description - Description for a function parameter. Note that all parameters must be documented to pass
check() .
@return description - Description of what the function returns.
@examples - Example code that demonstrates the functionality for the function. This code will be run at build time. If
there is code that you don't want to run at install/build time, you can surrond it with \dontrun{} . You should also this for
any code that takes more than a few seconds to run.
@section title - Adds arbitrary sections to teh documentation.
@inherit , @inheritParams , and @inheritSection - Allows you to include documentation from another function.
@seealso - Links to documentation of another function or dataset.
@export - This function should be exported (i.e. made public) when the package is loaded by a user. If this is missing,
then the function can only be used internally (or using the package:::function syntax).

14 / 38

#' Sum of vector elements

#'

#' `sum()` returns the sum of all the values present in its arguments.

#'

#' This is a generic function: methods can be defined for it directly

#' or via the [Summary] group generic. For this to work properly,

#' the arguments `...` should be unnamed, and dispatch is on the

#' first argument.

#'

#' @param ... Numeric, complex, or logical vectors.

#' @param na.rm A logical scalar. Should missing values (including `NaN`)

#' be removed?

#' @return If all inputs are integer and logical, then the output

#' will be an integer. If integer overflow

#' (<http://en.wikipedia.org/wiki/Integer_overflow>) occurs, the output

#' will be NA with a warning. Otherwise it will be a length-one numeric or

#' complex vector.

#'

#' Zero-length vectors have sum 0 by definition. See

#' <http://en.wikipedia.org/wiki/Empty_sum> for more details.

#' @export

#' @examples

#' sum(1:10)

#' sum(1:5, 6:10)

#' sum(F, F, F, T, T)

#'

#' sum(.Machine$integer.max, 1L)

#' sum(.Machine$integer.max, 1)

#'

#' \dontrun{

#' sum("a")

#' }

sum <- function(..., na.rm = TRUE) {}

Run ?sum to see the built documentation (the code has been truncated
some to fit).

Complete documentation for the sum function

15 / 38

Documentation for data follows the same
structure as functions in terms of title,
description, and details. However, there are
two additional tags that are useful:

@format - Gives an overview of the
structure of the dataset

@source - Reference or URL where the
data was retrieved from.

Documenting data

#' x and y coordinates generated from a cubic function.

#'

#' This \code{data.frame} is used to show the features

#' of the \code{\link{loess_vis}} function with cubic

#' data. It was generated using the following code:

#'

#' \code{

#' set.seed(2112)

#' cubic_df <- tibble(

#' x = seq(-1, 1, by = 0.01),

#' y = x^3 + rnorm(length(x), mean = 0, sd = 0.05)

#' }

#'

#' @format A data frame with 201 rows and 2 variables:

#' \describe{

#' \item{x}{independent variable}

#' \item{y}{dependent variable}

#' ...

#' }

#' @source Randomly generated data.

"cubic_df"

16 / 38

Package Documentation
In addition to documenting the objects (e.g. functions and data), you can use Roxygen to document the
package. The title and description will be pulled from the DESCRIPTION file, so this is useful for providing
additional details, keywords, and to define package dependencies.

usethis::use_package_doc()

@keywords - List of keywords related to your package.

@import package - This will indicate that the package needs to load the specified package to work.

@importFrom package function(s) - This will indicate that the function(s) in the specified package
are required to work. Note that the list of functions is space separated.

There are two approaches to handling @import and @importFrome : 1. Include them in all one location in
the package documentation or 2. Include them with each function based upon what that function needs.
If the later, it is ok if they are duplicated as Roxygen will handle that when we build the documentation
files. 17 / 38

Formatting within Documentation

There will be a few instances where you will need to use LaTeX style markup within your
documentation.

\code{} - Will format the enclosing text in a fixed-width font typically for code references.

\link{} - Will link to another function or dataset within the help documentation.
Alternatively, you can no use [function()] markdown syntax to link to other function
documentation.

\dontrun{} - Used in @examples sections for code that should not be run when the package
is built or installed.

\describe{\item{}{}} - When you wish to create a list. Often used for describing data and
functions that return complex lists.

18 / 38

Vignettes

Vignettes are long form documents describing utilizing your package. I recommend writing your
vignettes in Rmarkdown. The use_vignette function will create a new vignette.

usethis::use_vignette("loess")

This will specifically:

1. Create the vignettes/ directory.

2. Add the necessary dependencies to the DESCRIPTION file.

3. Create a draft file vignettes/loess.Rmd .

You can edit this file using the same Rmarkdown syntax used elsewhere. For details on
formatting, see https://r-pkgs.org/vignettes.html

19 / 38

https://r-pkgs.org/vignettes.html

First, we need to setup our package for testing using
the testthat package.

usethis::use_testthat()

This will:

1. Create a tests/testthat directory.

2. Add testthat to the Suggests field in the
DESCRIPTION.

3. Create a file tests/testthat.R that runs all your
tests when R CMD check runs.

Typical workflow will be:

1. Create a test with usethis::use_test('TEST_NAME') .

2. Modify your code and/or test.

3. Run your tests with devtools::test() .

4. Repeat 2 and 3 until your tests run without error.

5. Repeat steps 1 through 4 until all of your code
within the package has been tested.

Testing
It is important to test your package. The testthat package provides a framework for writing tests that integrates into
the development process. This way, each time you build your package all tests are run.

20 / 38

Testing

Tests are organized as:

Expectations - The basic level of testing.
Test Groups - A grouping of one or more expectations.

Consider the following test group with three expectations:

test_that("numbers are equivelent", {

 expect_equal(10, 10 + 1e-7) # This will pass.

 expect_identical(10, 11) # This will not pass

 expect_identical(10, 10 + 1e-7) # This will not pass

})

Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead. — Martin Fowler

21 / 38

Expectations

The testthat package provides a lot of functions to check the expected outcome from your tests.
They all have two arguements: 1. The actual result and 2. What is expected. If they don't match, an
error is thrown.

ls('package:testthat')[grep('^expect_', ls('package:testthat'))]

[1] "expect_condition" "expect_cpp_tests_pass" "expect_equal" "expect_equal_to_referenc

[5] "expect_equivalent" "expect_error" "expect_failure" "expect_false"

[9] "expect_gt" "expect_gte" "expect_identical" "expect_invisible"

[13] "expect_is" "expect_known_hash" "expect_known_output" "expect_known_value"

[17] "expect_length" "expect_less_than" "expect_lt" "expect_lte"

[21] "expect_mapequal" "expect_match" "expect_message" "expect_more_than"

[25] "expect_named" "expect_no_match" "expect_null" "expect_output"

[29] "expect_output_file" "expect_reference" "expect_s3_class" "expect_s4_class"

[33] "expect_setequal" "expect_silent" "expect_snapshot" "expect_snapshot_error"

[37] "expect_snapshot_file" "expect_snapshot_output" "expect_snapshot_value" "expect_snapshot_warning"

[41] "expect_success" "expect_that" "expect_true" "expect_type"

[45] "expect_vector" "expect_visible" "expect_warning"

22 / 38

Testing Visualizations

The vdiffr package is an extension to testthat that will monitor R plots. The first time the test
is run the image is saved so that subsequent tests will compare the output to the previous
version. If the there are differences, the testthat::snapshot_review() will allow you to review
the differences.

test_that("loess_vis works", {

 data("cubic_df")

 p <- loess_vis(y ~ x, data = cubic_df)

 vdiffr::expect_doppelganger("default loess_vis", p)

})

23 / 38

https://github.com/r-lib/vdiffr

Building

Generate the documentation files from the
source files.

document()

Build the package as a binary.

build()

Install the package.

install()

Testing

Run the tests.

test()

Check your package for any errors.

check()

Building your package

24 / 38

Demo

25 / 38

Working Example

We will convert the Loess regression function and Shiny app created in a past talk into an R
package. https://albanyrusers.org/post/2021-11-30-intro_to_shiny/

source('2022-03-01-R_Package_Development/Shiny_Loess/loess_vis.R')

data("faithful")

loess_vis(eruptions ~ waiting, data = faithful)

26 / 38

https://albanyrusers.org/post/2021-11-30-intro_to_shiny/

Shiny Apps in R Packages

27 / 38

Including shiny apps in R Packages
Option One: Include the shiny app in the inst/ directory, for example inst/shiny/ . You can then write a
function that starts the app from that director.

#' My Shiny App

#' @export

my_shiny_app <- function() {

 shiny::runApp(appDir = system.file('shiny', package='loess'))

}

28 / 38

shiny_server <- function(input, output, session) {

if(!exists('thedata',

 envir = parent.env(environment()),

 inherits = FALSE)) {

 message('thedata not available...')

 data(faithful, envir = environment())

 thedata <- faithful

 }

 output$thedata <- renderTable({

return(thedata)

 })

}

shiny_ui <- function() {

 fluidPage(

 titlePanel('Shiny Parameter Test'),

 tableOutput('thedata')

)

}

Including shiny apps in R Packages
Option Two: Define the Shiny server and ui as functions within the package. The advantage of this
approach is you can pass startup parameters to the Shiny app. Consider this simple Shiny app that
displays a data frame.

Note that function checks for thedata in the environment. If it doesn't exist it creates the object and
sets it equal the faithful data frame. In the standalone Shiny app, thedata was set in global.R .

29 / 38

runShinyApp <- function(thedata, ...) {

 shiny_env <- new.env()

Set names parameters

if(!missing(thedata)) {

 assign('thedata', thedata, shiny_env)

 }

Set other parameters from the ... operator

 params <- list(...)

for(i in seq_len(length(params))) {

 assign(names(params[i]), params[[i]],

 shiny_env)

 }

 environment(shiny_ui) <- shiny_env

 environment(shiny_server) <- shiny_env

 app <- shiny::shinyApp(

 ui = shiny_ui,

 server = shiny_server

)

 environment(app) <- shiny_env

 runApp(app)

}

This function can easily be reused in your
own package. Note that it assigns both
named parameters (in this example thedata)
as well as arbitrary parameters specified with
the ... operator. For example, this call will
not only change thedata in the Shiny app,
but will also pass some_other_var to the
Shiny app.

runShinyApp(

 thedata = mtcars,

 some_other_var = 'Some value')

Read more here: https://bryer.org/post/2021-02-12-

shiny_apps_in_r_packages/

Including shiny apps in R Packages

30 / 38

https://bryer.org/post/2021-02-12-shiny_apps_in_r_packages/

Releasing the package to the world

31 / 38

Github

The use_git will initialize a git repository for your package (from the current working directory).
The use_github will then publish it to Github.

usethis::use_git()

usethis::use_github()

Once the package is on Github, it can be installed using:

remotes::install_github('jbryer/loess')

32 / 38

CRAN

If your package is ready to release to CRAN (no errors, warnings, or notes from running check()),
the devtools::release() will guide you through the process of publishing your package to CRAN.
You will:

1. Confirm that you have read the CRAN Repository Policy

2. Created a cran-comments.md file with comments submitted to the CRAN maintainers.

release()

Good luck and don't be discouraged if your package doesn't get approved on the first attempt.

33 / 38

https://cran.r-project.org/web/packages/policies.html

Build a website

The pkgdown package is a quick and easy way to create a website for your package. It will use the
documentation you have already written within your R scripts, vignettes, and README for the site
contents.

The use_pkgdown() call will configure your package to use pkgdown (only needs to be called
once). Then build_site() will build the site into the docs/ direcotry.

usethis::use_pkgdown()

pkgdown::build_site()

Once published to Github, you can configure Github Pages to host the site from the docs/
directory. This is located in the Setting section of your repository.

34 / 38

https://pages.github.com/

Wrap Up

35 / 38

Additional Resources

R Packages book by Hadley Wickham: https://r-pkgs.org/index.html

Happy Git and Github for the useR by Jennifer Bryan

usethis package documentation: https://usethis.r-lib.org/index.html

devtools package documentation: https://devtools.r-lib.org

roxygen2 package documentation: https://roxygen2.r-lib.org/index.html

pkgdown package documentation: https://pkgdown.r-lib.org

Writing R Extensions documentation: https://cran.r-project.org/manuals.html#R-exts

36 / 38

https://r-pkgs.org/index.html
https://usethis.r-lib.org/index.html
https://devtools.r-lib.org/
https://roxygen2.r-lib.org/index.html
https://pkgdown.r-lib.org/
https://cran.r-project.org/manuals.html#R-exts

Devtools Cheatsheet

Other cheatsheets available here: https://www.rstudio.com/resources/cheatsheets/

37 / 38

https://rawgit.com/rstudio/cheatsheets/main/package-development.pdf
https://www.rstudio.com/resources/cheatsheets/

Thank you!

 jason.bryer@cuny.edu
 @jbryer
 @jbryer
 bryer.org

38 / 38

mailto:jason.bryer@cuny.edu
https://github.com/jbryer
https://twitter.com/jbryer
https://bryer.org/

