Multiple Linear Regression

DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

April 13, 2022

One Minute Paper Results

What was the most important thing you learned during this class?

NULL

What important question remains unanswered for you?

NULL

Data Project

Checklist / Suggested Outline

- Abstract (300 word maximum)
- Overview slide
 - Context on the data collection
 - Description of the dependent variable (what is being measured)
 - Description of the independent variable (what is being measured; include at least 2 variables)
 - Research question
- Summary statistics
- Include appropriate data visualizations.
- Statistical output
 - Include the appropriate statistics for your method used.
 - For null hypothesis tests (e.g. t-test, chi-squared, ANOVA, etc.), state the null and alternative hypotheses along with relevant statistic and p-value (and confidence interval if appropriate).
 - For regression models, include the regression output and interpret the R-squared value.
- Conclusion
 - Why is this analysis important?
 - Limitations of the analysis?

Criteria for Grading

- Data is presented to support the conslusions using the appropriate analysis (i.e. the statistical method chosen supports the research question).
- Suitable tables summarize data in a clear and meaningful way even to those unfamiliar with the project.
- Suitable graphics summarize data in a clear and meaningful way even to those unfamiliar with the project.
- Data reviewed and analyzed accurately and coherently.
- Proper use of descriptive and/or inferential statistics.

Full rubric available here: https://fall2021.data606.net/assignments/project/

Weight of Books

```
allbacks <- read.csv('../course_data/allbacks.csv')
head(allbacks)</pre>
```

##		Х	volume	area	weight	cover
##	1	1	885	382	800	hb
##	2	2	1016	468	950	hb
##	3	3	1125	387	1050	hb
##	4	4	239	371	350	hb
##	5	5	701	371	750	hb
##	6	6	641	367	600	hb

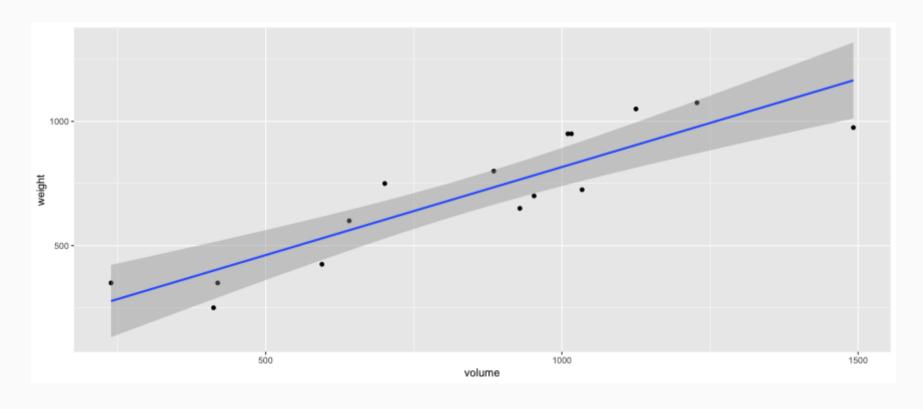
From: Maindonald, J.H. & Braun, W.J. (2007). Data Analysis and Graphics Using R, 2nd ed.

Weights of Books (cont)

lm.out <- lm(weight ~ volume, data=allbacks)</pre>

 $\hat{weight} = 108 + 0.71 volume$

 $R^2=80\%$



DATA 606 Spring 2022 7 / 27

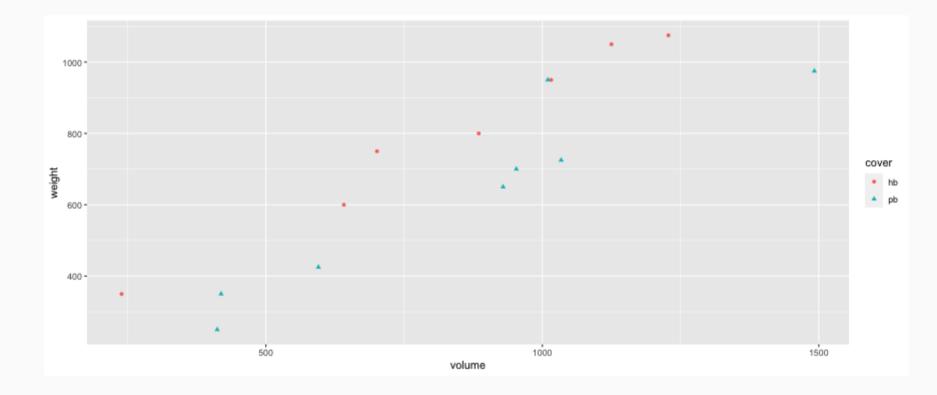
Modeling weights of books using volume

summary(lm.out)

```
##
## Call:
## lm(formula = weight ~ volume, data = allbacks)
##
## Residuals:
      Min 10 Median 30 Max
##
## -189.97 -109.86 38.08 109.73 145.57
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 107.67931 88.37758 1.218 0.245
## volume 0.70864 0.09746 7.271 6.26e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 123.9 on 13 degrees of freedom
## Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875
## F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06
```


Weights of hardcover and paperback books

• Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?



• Paperbacks generally weigh less than hardcover books after controlling for book's volume.

Modeling weights of books using volume and cover

lm.out2 <- lm(weight ~ volume + cover, data=allbacks)
summary(lm.out2)</pre>

```
##
## Call:
## lm(formula = weight ~ volume + cover, data = allbacks)
##
## Residuals:
##
      Min
              10 Median 30
                                    Max
## -110.10 -32.32 -16.10 28.93 210.95
##
## Coefficients:
           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 197.96284 59.19274 3.344 0.005841 **
## volume 0.71795 0.06153 11.669 6.6e-08 ***
## coverpb -184.04727 40.49420 -4.545 0.000672 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 78.2 on 12 degrees of freedom
## Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154
## F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```


Linear Model

 $\hat{weight} = 198 + 0.72 volume - 184 coverpb$

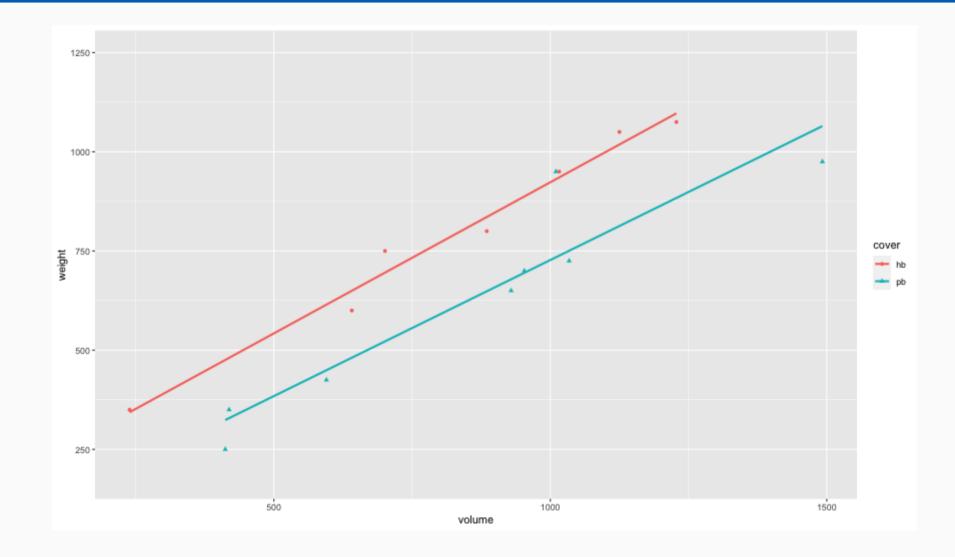
1. For **hardcover** books: plug in 0 for cover.

 $\hat{weight} = 197.96 + 0.72 volume - 184.05 imes 0 = 197.96 + 0.72 volume$

1. For **paperback** books: put in 1 for cover.

 $\hat{weight} = 197.96 + 0.72 volume - 184.05 imes 1$

Visualizing the linear model



Interpretation of the regression coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
coverpb	-184.0473	40.4942	-4.55	0.0007

- **Slope of volume**: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- **Slope of cover**: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.
 - Obviously, the intercept does not make sense in context. It only serves to adjust the height of the line.

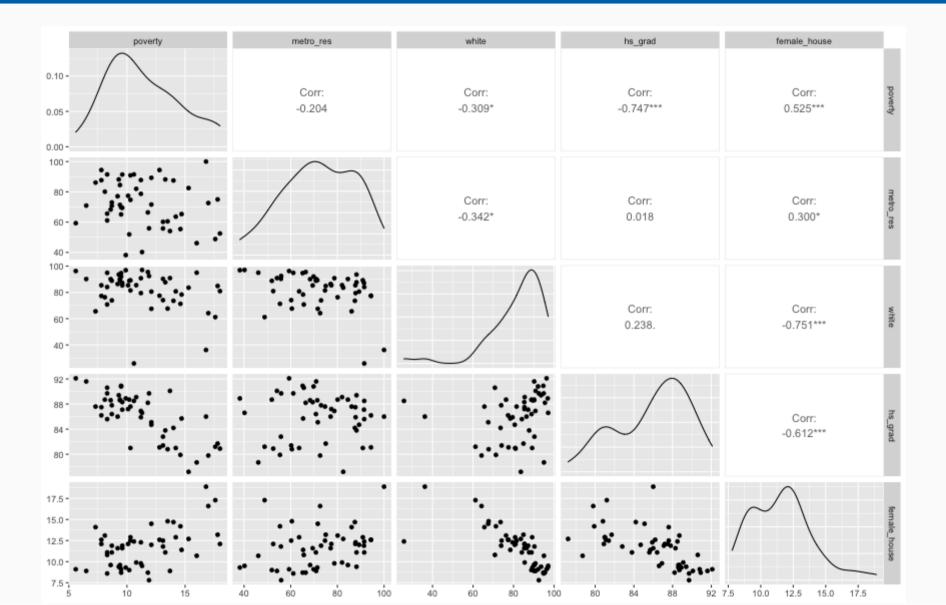
Modeling Poverty

```
poverty <- read.table("../course_data/poverty.txt", h = T, sep = "\t")
names(poverty) <- c("state", "metro_res", "white", "hs_grad", "poverty", "female_house")
poverty <- poverty[,c(1,5,2,3,4,6)]
head(poverty)</pre>
```

## state poverty metro_res white hs_grad fema	ale_house
## 1 Alabama 14.6 55.4 71.3 79.9	14.2
## 2 Alaska 8.3 65.6 70.8 90.6	10.8
## 3 Arizona 13.3 88.2 87.7 83.8	11.1
## 4 Arkansas 18.0 52.5 81.0 80.9	12.1
## 5 California 12.8 94.4 77.5 81.1	12.6
## 6 Colorado 9.4 84.5 90.2 88.7	9.6

From: Gelman, H. (2007). *Data Analysis using Regression and Multilevel/Hierarchial Models*. Cambridge University Press.

Modeling Poverty

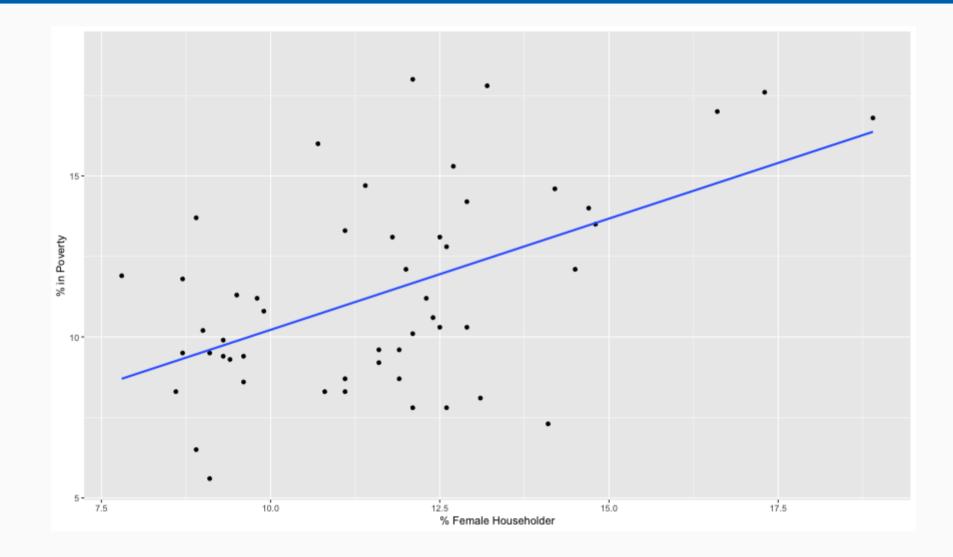


Predicting Poverty using Percent Female Householder

lm.poverty <- lm(poverty ~ female_house, data=poverty)
summary(lm.poverty)</pre>

```
##
## Call:
## lm(formula = poverty ~ female house, data = poverty)
##
## Residuals:
              1Q Median 3Q
      Min
##
                                    Max
## -5.7537 -1.8252 -0.0375 1.5565 6.3285
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.3094 1.8970 1.745 0.0873.
## female_house 0.6911 0.1599 4.322 7.53e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.664 on 49 degrees of freedom
## Multiple R-squared: 0.276, Adjusted R-squared: 0.2613
## F-statistic: 18.68 on 1 and 49 DF, p-value: 7.534e-05
```


% Poverty by % Female Household



Another look at R²

 \mathbb{R}^2 can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been calculating it)

2. square the correlation coefficient of y and \hat{y}

3. based on definition:

$$R^2 = rac{explained \ variability \ in \ y}{total \ variability \ in \ y}$$

Using ANOVA we can calculate the explained variability and total variability in y.

Sum of Squares

```
anova.poverty <- anova(lm.poverty)
print(xtable(anova.poverty, digits = 2), type='html')</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1.00	132.57	132.57	18.68	0.00
Residuals	49.00	347.68	7.10		

Sum of squares of y: $SS_{Total} = \sum (y - \bar{y})^2 = 480.25 \rightarrow$ total variability

Sum of squares of residuals: $SS_{Error} = \sum e_i^2 = 347.68 \rightarrow$ unexplained variability

Sum of squares of x: $SS_{Model} = SS_{Total} - SS_{Error} = 132.57 \rightarrow$ explained variability

$$R^2=rac{explained \ variability \ in \ y}{total \ variability \ in \ y}=rac{132.57}{480.25}=0.28$$

Why bother?

- For single-predictor linear regression, having three ways to calculate the same value may seem like overkill.
- However, in multiple linear regression, we can't calculate R^2 as the square of the correlation between x and y because we have multiple xs.
- And next we'll learn another measure of explained variability, *adjusted* R², that requires the use of the third approach, ratio of explained and unexplained variability.

Predicting poverty using % female household & %

lm.poverty2 <- lm(poverty ~ female_house + white, data=poverty)
print(xtable(lm.poverty2), type='html')</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.5789	5.7849	-0.45	0.6577
female_house	0.8869	0.2419	3.67	0.0006
white	0.0442	0.0410	1.08	0.2868

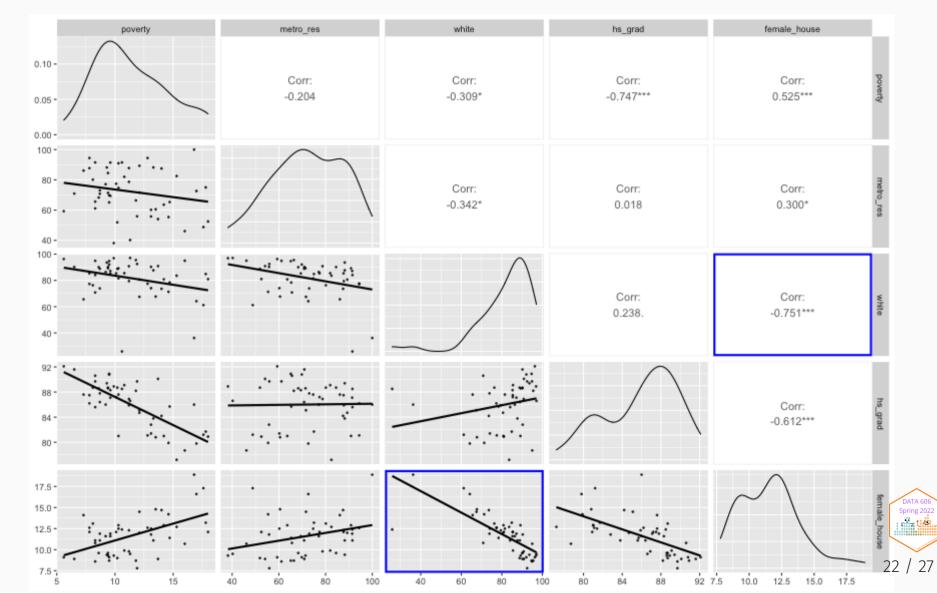
anova.poverty2 <- anova(lm.poverty2)
print(xtable(anova.poverty2, digits = 3), type='html')</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1.000	132.568	132.568	18.745	0.000
white	1.000	8.207	8.207	1.160	0.287
Residuals	48.000	339.472	7.072		

$$R^2=rac{explained \ variability \ in \ y}{total \ variability \ in \ y}=rac{132.57+8.21}{480.25}=0.29$$

Unique information

Does adding the variable white to the model add valuable information that wasn't provided by female_house?



Collinearity between explanatory variables

poverty vs % female head of household

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.3094	1.8970	1.74	0.0873
female_house	0.6911	0.1599	4.32	0.0001

poverty vs % female head of household and % female household

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.5789	5.7849	-0.45	0.6577
female_house	0.8869	0.2419	3.67	0.0006
white	0.0442	0.0410	1.08	0.2868

Note the difference in the estimate for female_house.

Collinearity between explanatory variables

• Two predictor variables are said to be collinear when they are correlated, and this collinearity complicates model estimation.

Remember: Predictors are also called explanatory or independent variables. Ideally, they would be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. *parsimonious* model.
- While it's impossible to avoid collinearity from arising in observational data, experiments are usually designed to prevent correlation among predictors

R^2 vs. adjusted R^2

Model	R^2	Adjusted R^2
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

- When any variable is added to the model R^2 increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^2 does not increase.

Adjusted R²

$$R_{adj}^2 = 1 - \left(rac{SS_{error}}{SS_{total}} imes rac{n-1}{n-p-1}
ight)$$

where *n* is the number of cases and *p* is the number of predictors (explanatory variables) in the model.

- Because p is never negative, R^2_{adj} will always be smaller than R^2 .
- R^2_{adj} applies a penalty for the number of predictors included in the model.
- Therefore, we choose models with higher R^2_{adj} over others.

Complete the one minute paper: https://forms.gle/qxRnsCyydx1nf8sXA

1. What was the most important thing you learned during this class?

2. What important question remains unanswered for you?

