
Maximum Likelihood Estimation and Logistic Regression
DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

April 27, 2022



What was the most important thing you
learned during this class?

## NULL

What important question remains
unanswered for you?

## NULL

One Minute Paper Results

2 / 62



Maximum Likelihood Estimation

3 / 62



Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is an important procedure for estimating parameters in
statistical models. It is often first encountered when modeling a dichotomous outcome variable
vis-à-vis logistic regression. However, it is the backbone of generalized linear models (GLM) which
allow for error distribution models other than the normal distribution. Most introductions to MLE
rely on mathematical notation that for many students is opaque and hinders learning how this
method works. The document outlines an approach to understanding MLE that relies on
visualizations and mathematical notation is only used when necessary.

4 / 62

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Generalized_linear_model


Bivariate Regression

We will begin with a typical bivariate regression using the mtcars  data set where we wish to
predict mpg  (miles per gallon) from wt  (weight in 1,000 lbs).

5 / 62



Linear Regression

Our goal is to estimate

where  is the slope and  is the intercept.

Ympg = βwtX + e

βwt e

6 / 62



Ordinary Least Squares
With ordinary least squares (OLS) regression our goal is to minimize the residual sum of squares (RSS):

where  is the variable to be predicted,  is the predicted value of , and  is the sample size.

The basic properties we know about regression are:

The correlation measures the strength of the relationship between x and y (see this shiny app for an excellent visual overview of
correlations).
The correlation ranges between -1 and 1.
The mean of x and y must fall on the line.

The slope of a line is defined as the change in y over the change in x (  ). For regression use the ration of the standard

deviations such that the correlation is defined as  where  is the slope,  is the correlation, and  is the sample
standard deviation.

RSS =
n

∑
i=1

(yi − f(xi))2

yi f(xi) yi n

Δy

Δx

m = r
sy

sx
m r s

7 / 62

https://shiny.rit.albany.edu/stat/rectangles/


Ordinary Least Squares

We can easily calculate the RSS for various correlations (r) ranging between -1 and 1.

y <- mtcars$mpg

x <- mtcars$wt

mean.y <- mean(y)

mean.x <- mean(x)

sd.y <- sd(y)

sd.x <- sd(x)

ols <- tibble(

    r = seq(-1, 1, by = 0.025),            # Correlation

    m = r * (sd.y / sd.x),                 # Slope

    b = mean.y - m * mean.x                # Intercept

) %>% rowwise() %>%

    mutate(ss = sum((y - (m * x + b))^2)) %>% # Sum of squares residuals

    as.data.frame()

8 / 62



Ordinary Least Squares
ggplot(ols, aes(x = r, y = ss)) + geom_path() + geom_point() + 

    ggtitle('Residual sum of squares.') + xlab('Correlation') + ylab('Sum of Squares Residual')

9 / 62



Ordinary Least Squares

The correlation with the correlation the resulted in the smallest RSS is -0.875.

ols %>% dplyr::filter(ss == min(ss)) # Select the row with the smallest RSS

##        r         m       b       ss

## 1 -0.875 -5.389687 37.4306 278.3826

Calculating the correlation in R gives us -0.8676594 and the slope is -5.3444716 which is close to
our estimate here. We could get a more accurate result if we tried smaller steps in the correlation
(see the by  parameter in the seq  function above).

10 / 62



Minimizing RSS Algorithmically

This approach works well here because the correlation is bounded between -1 and 1 and we can
easily calculate the RSS for a bunch of possible correlations. However, there are more efficient
ways of finding the correlation that minimizes the RSS than trying correlations equally
distributed across the possible range. For example, consider the following simple algorithm:

1. Calculate the RSS for .
2. Calculate the RSS for  If  then calculate the RSS with , else calculate the RSS with 

We can repeat this procedure, essentially halving the distance in each iteration until we find a
sufficiently small RSS.

r = 0

r = 0.5 RSS0.5 < RSS0 r = 0.75

r = −0.5

11 / 62



y <- mtcars$mpg

x <- mtcars$wt

ssr <- function(r, x, y) {

    mean.y <- mean(y); mean.x <- mean(x)

    sd.y <- sd(y); sd.x <- sd(x)

    m = r * (sd.y / sd.x)

    b = mean.y - m * mean.x

    ss = sum((y - (m * x + b))^2)

return(ss)

}

r_left <- -1

r_right <- 1

ssr_left <- ssr(r_left, x = x, y = y)

ssr_right <- ssr(r_right, x = x, y = y)

iter <- numeric()

threshold <- 0.00001

while(abs(ssr_left - ssr_right) > threshold) {

if(ssr_left < ssr_right) {

        r_right <- r_right - (r_right - r_left) / 2

        ssr_right <- ssr(r_right, x = x, y = y)

        iter <- c(iter, r_right)

    } else {

        r_left <- r_left + (r_right - r_left) / 2

        ssr_left <- ssr(r_left, x = x, y = y)

        iter <- c(iter, r_left)

    }

}

r_left; r_right; cor(x, y)

## [1] -0.8676758

## [1] -0.8676147

## [1] -0.8676594

Minimizing RSS Algorithmically

12 / 62



The optim  function

This process is, in essence, the idea of numerical optimization procedures. In R, the optim
function implements the Nedler-Mead (Nedler & Mead, 1965) and Limited Memory BFGS (Byrd et
al, 1995) methods for optimizing a set of parameters. The former is the default but we will use
the latter throughout this document since it allows for specifying bounds for certain parameters
(e.g. only consider positive values). The details of how the algorithm works is beyond the scope
of this article (see this interactive tutoral by Ben Frederickson for a good introduction), instead
we will focus on what the algorithm does.

13 / 62

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://www.benfrederickson.com/numerical-optimization/


Example
To begin, we must define a function that calculates a metric for which the optimizer is going to minimize
(or maximize).

residual_sum_squares <- function(parameters, predictor, outcome) {

    a <- parameters[1] # Intercept

    b <- parameters[2] # beta coefficient

    predicted <- a + b * predictor

    residuals <- outcome - predicted

    ss <- sum(residuals^2)

return(ss)

}

The parameters  is a vector of the parameters the algorithm is going to minimize (or maximize). Here,
these will be the slope and intercept. The predictor  and outcome  are parameters passed through from
the ...  parameter on the optim  function and are necessary for us to calculate the RSS. We can now get
the RSS for any set of parameters.

residual_sum_squares(c(37, -5), mtcars$wt, mtcars$mpg)

## [1] 303.5247 14 / 62



Small Digression: Saving the steps along the way...
In order to explore each step of the algorithm, we need to wrap the optim  function to capture the
parameters and output of the function. The optim_save  function will add two elements to the returned
list: iterations  is the raw list of the parameters and output saved and iterations_df  is a data.frame
containing the same data.

optim_save <- function(par, fn, ...) {

    iterations <- list()

    wrap_fun <- function(parameters, ...) {

        n <- length(iterations)

        result <- fn(parameters, ...)

        iterations[[n + 1]] <<- c(parameters, result)

return(result)

    }

    optim_out <- stats::optim(par, wrap_fun, ...)

    optim_out$iterations <- iterations

    optim_out$iterations_df <- as.data.frame(do.call(rbind, iterations))

    names(optim_out$iterations_df) <- c(paste0('Param', 1:length(par)), 'Result')

    optim_out$iterations_df$Iteration <- 1:nrow(optim_out$iterations_df)

return(optim_out)

}

15 / 62



OLS with the optim  function

We can now call the optim_save  function with our residual_sum_squares  function. We initialize
the algorithm with two random values for the intercept and slope, respectively. Note that we are
using Broyden, Fletcher, Goldfarb, and Shanno optimization method which allows for the
specification of bounds on the parameter estimates which we will use later.

optim.rss <- optim_save(

    par = runif(2),

    fn = residual_sum_squares, 

    method = "L-BFGS-B",

    predictor = mtcars$wt,

    outcome = mtcars$mpg

)

16 / 62



OLS with the optim  function

The par  parameter provides the final parameter estimates.

optim.rss$par

## [1] 37.285113 -5.344468

We can see that the parameters are accurate to at least four decimal places to the OLS method
used by the lm  function.

lm.out <- lm(mpg ~ wt, data = mtcars)

lm.out$coefficients

## (Intercept)          wt 

##   37.285126   -5.344472

17 / 62



OLS with the optim  function

It took the optim  function 65 iterations to find the optimal set of parameters that minimized the
RSS. This figure shows the value of the parameters (i.e. intercept and slope) and the RSS for each
iteration.

18 / 62



Residuals to Likelihoods

Now that we have laid the groundwork for finding parameters algorithmically, we need to
introduce another way of evaluating how well parameters fit the data, namely the likelihood.
First, let's revisit what we are doing in OLS.

19 / 62



Probability
We often think of probabilities as the areas under a fixed distribution. For example, the first car in
mtcars  is Mazda RX4 with an average miles per gallon of 21 and weighs 2620lbs. The probability of a car
with a miles per gallon less than Mazda RX4 given the data we have in mtcars  is 0.5599667.

20 / 62



Probabilities and Likelihoods

For probabilities, we are working with a fixed distribution, that is:

The likelihood are the y-axis values (i.e. density) for fixed data points with distributions that can
move, that is:

pr(data | distribution)

L(distribution | data)

21 / 62



Likelihoods

The likelihood is the height of the density function. This figure depicts two likelihood for two
observations. The mean of each distribution is equal to  and the intercept (also known
as the error term) defines the standard deviation of the distribution.

βwtX + e

22 / 62



Log-Likelihood Function
We can then calculate the likelihood for each observation in our data. Unlike OLS, we now want to
maximize the sum of these values. Also, we are going to use the log of the likelihood so we can add
them instead of multiplying. We can now define our log likelihood function:

loglikelihood <- function(parameters, predictor, outcome) {

    a <- parameters[1]     # intercept

    b <- parameters[2]     # slope / beta coefficient

    sigma <- parameters[3] # error

    ll.vec <- dnorm(outcome, a + b * predictor, sigma, log = TRUE)

return(sum(ll.vec))

}

Note that we have to estimate a third parameter, sigma, which is the error term and defines the
standard deviation for the normal distribution for estimating the likelihood. This is connected to the
distribution of the residuals as we will see later. We can now calculate the log-likelihood for any
combination of parameters.

loglikelihood(c(37, -5, sd(mtcars$mpg)), predictor = mtcars$wt, outcome = mtcars$mpg)

23 / 62



Maximum Likelihood Estimation

We can now use the optim_save  function to find the parameters that maximize the log-
likelihood. Note two important parameter changes:

1. We are specifying the lower  parameter so that the algorithm will not try negative values for sigma since the variance
cannot be negative.

2. The value for the control  parameter indicates that we wish to maximize the values instead of minimizing (which is the
default).

optim.ll <- optim_save(

    runif(3),                     # Random initial values

    loglikelihood,                # Log-likelihood function

    lower = c(-Inf, -Inf, 1.e-5), # The lower bounds for the values, note sigma, cannot be negative

    method = "L-BFGS-B",

    control = list(fnscale = -1), # Indicates that the maximum is desired rather than the minimum

    predictor = mtcars$wt,

    outcome = mtcars$mpg

)

24 / 62



Maximum Likelihood Estimation

We can get our results and compare them to the results of the lm  function and find that they
match to at least four decimal places.

optim.ll$par[1:2]

## [1] 37.285127 -5.344472

lm.out$coefficients

## (Intercept)          wt 

##   37.285126   -5.344472

25 / 62



The steps of MLE
This figure shows the estimated regression line for each iteration of the optimization procedure (on the left; OLS
regression line in blue; MLE regression line in black) with the estimated parameters and log-likelihood for all
iterations on the left.

26 / 62



Likelihood Visualized
visualMLE::plot_likelihood(x = mtcars$wt, y = mtcars$mpg, pt = 2,

                           intercept = optim.ll$par[1],

                           slope = optim.ll$par[2],

                           sigma = optim.ll$par[3])

27 / 62



Likelihood Visualized

28 / 62



Root-Mean-Square Error
With MLE we need to estimate what is often referred to as the error term, or as we saw above is the standard
deviation of the normal distribution from which we are estimating the likelihood from. In the previous figure notice
that the normal distribution id drawn vertically. This is because the likelihood is estimated from the error, or the
residuals. In OLS we often report the root-mean-square deviation (RMSD, or root-mean-square error, RMSE). The RMSD
is the standard deviation of the residuals:

Where  is the observation,  is the observed value,  is the estimated (predicted) value, and  is the sample size.
Below, we see that the numerical optimizer matches the RMSD within a rounding error.

optim.ll$par[3]

## [1] 2.949164

sqrt(sum(resid(lm.out)^2) / nrow(mtcars))

## [1] 2.949163

RMSD  =  √
∑

N

i=1(xi − x̂i)2

N

i xi x̂i N

29 / 62



Logistic Regression

30 / 62



Dichotomous (x) and continuous (y) variables
df <- data.frame(

    x = rep(c(0, 1), each = 10),

    y = c(rnorm(10, mean = 1, sd = 1),

          rnorm(10, mean = 2.5, sd = 1.5))

)

head(df)

##   x          y

## 1 0  1.3573080

## 2 0  2.8606923

## 3 0 -0.2019866

## 4 0  1.3343358

## 5 0  1.7258741

## 6 0  0.4548514

tab <- describeBy(df$y, group = df$x, mat = TRUE, skew = FALSE)

tab$group1 <- as.integer(as.character(tab$group1))

31 / 62



Dichotomous (x) and continuous (y) variables
ggplot(df, aes(x = x, y = y)) +    geom_point(alpha = 0.5) +

    geom_point(data = tab, aes(x = group1, y = mean), color = 'red', size = 4) + 

    geom_smooth(method = lm, se = FALSE, formula = y ~ x)

32 / 62



Regression so far...

At this point we have covered:

Simple linear regression
Relationship between numerical response and a numerical or categorical predictor

Multiple regression
Relationship between numerical response and multiple numerical and/or categorical predictors

Maximum Likelihood Estimation

All of the approaches we have used so far have a quantitative variable with normally distributed
errors (i.e. residuals).

What we haven't seen is what to do when the predictors are weird (nonlinear, complicated
dependence structure, etc.) or when the response is weird (categorical, count data, etc.)

33 / 62



Odds

Odds are another way of quantifying the probability of an event, commonly used in gambling
(and logistic regression).

For some event ,

Similarly, if we are told the odds of E are  to  then

which implies

E

odds(E) = =
P(E)

P(Ec)

P(E)

1 − P(E)

x y

odds(E) = =
x

y

x/(x + y)

y/(x + y)

P(E) = x/(x + y), P(Ec) = y/(x + y)
34 / 62



Generalized Linear Models

Generalized linear models (GLM) are a generalization of OLS that allows for the response
variables (i.e. dependent variables) to have an error distribution that is not distributed normally.
All generalized linear models have the following three characteristics:

1. A probability distribution describing the outcome variable .

2. A linear model: .

3. A link function that relates the linear model to the parameter of the outcome distribution: 
 or .

We can estimate GLMs using maximum likelihood estimation (MLE). What will change is the log-
likelihood function.

η = β0 + β1X1 + ⋯ + βnXn

g(p) = η p = g−1(η)

35 / 62



Logistic Regression

Logistic regression is a GLM used to model a binary categorical variable using numerical and
categorical predictors.

We assume a binomial distribution produced the outcome variable and we therefore want to
model p the probability of success for a given set of predictors.

To finish specifying the Logistic model we just need to establish a reasonable link function that
connects  to . There are a variety of options but the most commonly used is the logit function.

Logit function

η p

logit(p) = log( ),  for 0 ≤ p ≤ 1
p

1 − p

36 / 62



The Logistic Function

logistic <- function(t) { return(1 / (1 + exp(-t))) }

ggplot() + stat_function(fun = logistic, n = 101) +  xlim(-4, 4) + xlab('t')

σ (t) = =
e

t

et + 1

1

1 + e−t

37 / 62



t as a Linear Function

The logistic function can now be rewritten as

Similar to OLS, we wish to minimize the errors. However, instead of minimizing the least squared
residuals, we will use a maximum likelihood function.

t = β0 + β1x

F (x) =
1

1 + e−(β0+β1x)

38 / 62



Example: Hours Studying Predicting Passing
study <- data.frame(

    Hours=c(0.50,0.75,1.00,1.25,1.50,1.75,1.75,2.00,2.25,2.50,2.75,3.00,

3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50),

    Pass=c(0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1)

)

ggplot(study, aes(x=factor(Pass), y=Hours)) + geom_boxplot() + xlab('Pass') + ylab('Hours Studied')

39 / 62



Loglikelihood Function

We need to define logit function and the log-likelihood function that will be used by the optim
function. Instead of using the normal distribution as above (using the dnorm function), we are
using a binomial distribution and the logit to link the linear combination of predictors.

logit <- function(x, beta0, beta1) {

return( 1 / (1 + exp(-beta0 - beta1 * x)) )

}

loglikelihood.binomial <- function(parameters, predictor, outcome) {

    a <- parameters[1] # Intercept

    b <- parameters[2] # beta coefficient

    p <- logit(predictor, a, b)

    ll <- sum( outcome * log(p) + (1 - outcome) * log(1 - p))

return(ll)

}

40 / 62



Estimating parameters using the optim  function
optim.binomial <- optim_save(

    c(0, 1), # Initial values

    loglikelihood.binomial,

    method = "L-BFGS-B",

    control = list(fnscale = -1),

    predictor = study$Hours,

    outcome = study$Pass

)

optim.binomial$par

## [1] -4.077575  1.504624

41 / 62



How did the optimizer get to this result?

42 / 62



The glm  function
( lr.out <- glm(Pass ~ Hours, data = study, family = binomial(link = 'logit')) )

## 

## Call:  glm(formula = Pass ~ Hours, family = binomial(link = "logit"), 

##     data = study)

## 

## Coefficients:

## (Intercept)        Hours  

##      -4.078        1.505  

## 

## Degrees of Freedom: 19 Total (i.e. Null);  18 Residual

## Null Deviance:        27.73 

## Residual Deviance: 16.06     AIC: 20.06

How does this compare to the optim  function?

optim.binomial$par

## [1] -4.077575  1.504624

43 / 62



Plotting the Results

44 / 62



Predictive Modeling

45 / 62



Prediction

Odds (or probability) of passing if studied zero hours?

Odds (or probability) of passing if studied 4 hours?

log( ) = −4.078 + 1.505 × 0
p

1 − p

= exp(−4.078) = 0.0169
p

1 − p

p = = .016
0.0169

1.169

log( ) = −4.078 + 1.505 × 4
p

1 − p

= exp(1.942) = 6.97
p

1 − p 46 / 62



Fitted Values
study[1,]

##   Hours Pass    Predict Predict_Pass          p

## 1   0.5    0 0.03471034        FALSE 0.03471462

logistic <- function(x, b0, b1) {

return(1 / (1 + exp(-1 * (b0 + b1 * x)) ))

}

logistic(.5, b0=-4.078, b1=1.505)

## [1] 0.03470667

47 / 62



Model Performance

The use of statistical models to predict outcomes, typically on new data, is called predictive
modeling. Logistic regression is a common statistical procedure used for prediction. We will
utilize a confusion matrix to evaluate accuracy of the predictions.

48 / 62



Predicting survivors of the Titanic
str(titanic)

## 'data.frame':    1309 obs. of  14 variables:

##  $ pclass   : Ord.factor w/ 3 levels "First"<"Second"<..: 1 1 1 1 1 1 1 1 1 1 ...

##  $ survived : Factor w/ 2 levels "No","Yes": 2 2 1 1 1 2 2 1 2 1 ...

##  $ name     : Factor w/ 1307 levels "Abbing, Mr. Anthony",..: 22 24 25 26 27 31 46 47 51 55 ...

##  $ sex      : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...

##  $ age      : num  29 0.92 2 30 25 48 63 39 53 71 ...

##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...

##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...

##  $ ticket   : Factor w/ 929 levels "110152","110413",..: 188 50 50 50 50 125 93 16 77 826 ...

##  $ fare     : num  211 152 152 152 152 ...

##  $ cabin    : Factor w/ 187 levels "","A10","A11",..: 45 81 81 81 81 151 147 17 63 1 ...

##  $ embarked : Factor w/ 4 levels "","C","Q","S": 4 4 4 4 4 4 4 4 4 2 ...

##  $ boat     : Factor w/ 28 levels "","1","10","11",..: 13 4 1 1 1 14 3 1 28 1 ...

##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...

##  $ home.dest: Factor w/ 370 levels "","?Havana, Cuba",..: 310 232 232 232 232 238 163 25 23 230 ...

49 / 62



Data Setup

We will split the data into a training set (70% of observations) and validation set (30%).

train.rows <- sample(nrow(titanic), nrow(titanic) * .7)

titanic_train <- titanic[train.rows,]

titanic_test <- titanic[-train.rows,]

This is the proportions of survivors and defines what our "guessing" rate is. That is, if we guessed
no one survived, we would be correct 62% of the time.

(survived <- table(titanic_train$survived) %>% prop.table)

## 

##        No       Yes 

## 0.6135371 0.3864629

50 / 62



Model Training
lr.out <- glm(survived ~ pclass + sex + sibsp + parch, data=titanic_train, family=binomial(link = 'logit'))

summary(lr.out)

## 

## Call:

## glm(formula = survived ~ pclass + sex + sibsp + parch, family = binomial(link = "logit"), 

##     data = titanic_train)

## 

## Deviance Residuals: 

##     Min       1Q   Median       3Q      Max  

## -2.1414  -0.7180  -0.4857   0.7142   2.3834  

## 

## Coefficients:

##             Estimate Std. Error z value Pr(>|z|)    

## (Intercept)  1.26831    0.15357   8.259   <2e-16 ***

## pclass.L    -1.27555    0.14574  -8.752   <2e-16 ***

## pclass.Q     0.03935    0.15941   0.247   0.8050    

## sexmale     -2.46018    0.17823 -13.803   <2e-16 ***

## sibsp       -0.22839    0.09702  -2.354   0.0186 *  

## parch        0.10561    0.10175   1.038   0.2993    

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

##     Null deviance: 1222.20  on 915  degrees of freedom

## Residual deviance:  885.72  on 910  degrees of freedom

## AIC: 897.72 51 / 62



Predicted Values
titanic_train$prediction <- predict(lr.out, type = 'response', newdata = titanic_train)

ggplot(titanic_train, aes(x = prediction, color = survived)) + geom_density()

52 / 62



Results
titanic_train$prediction_class <- titanic_train$prediction > 0.5

tab <- table(titanic_train$prediction_class, 

             titanic_train$survived) %>% prop.table() %>% print()

##        

##                 No        Yes

##   FALSE 0.52183406 0.12882096

##   TRUE  0.09170306 0.25764192

For the training set, the overall accuracy is 77.95%. Recall that 38.65% of passengers survived.
Therefore, the simplest model would be to predict that everyone died, which would mean we
would be correct 61.35% of the time. Therefore, our prediction model is 16.59% better than
guessing.

53 / 62



Checking with the validation dataset
(survived_test <- table(titanic_test$survived) %>% prop.table())

## 

##        No       Yes 

## 0.6284987 0.3715013

titanic_test$prediction <- predict(lr.out, newdata = titanic_test, type = 'response')

titanic_test$prediciton_class <- titanic_test$prediction > 0.5

tab_test <- table(titanic_test$prediciton_class, titanic_test$survived) %>%

    prop.table() %>% print()

##        

##                 No        Yes

##   FALSE 0.56997455 0.12213740

##   TRUE  0.05852417 0.24936387

The overall accuracy is 81.93%, or 19.1% better than guessing.

54 / 62



Receiver Operating Characteristic (ROC) Curve

The ROC curve is created by plotting the true positive rate (TPR; AKA sensitivity) against the false
positive rate (FPR; AKA probability of false alarm) at various threshold settings.

roc <- calculate_roc(titanic_train$prediction, titanic_train$survived == 'Yes')

summary(roc)

## AUC = 0.821

## Cost of false-positive = 1

## Cost of false-negative = 1

## Threshold with minimum cost = 0.545

55 / 62



ROC Curve
plot(roc)

56 / 62



ROC Curve
plot(roc, curve = 'accuracy')

57 / 62



Caution on Interpreting Accuracy
Loh, Sooo, and Zing (2016) predicted sexual orientation based on Facebook Status.

They reported model accuracies of approximately 90% using SVM, logistic regression and/or random
forest methods.

Gallup (2018) poll estimates that 4.5% of the Americal population identifies as LGBT.

My proposed model: I predict all Americans are heterosexual.

The accuracy of my model is 95.5%, or 5.5% better than Facebook's model!

Predicting "rare" events (i.e. when the proportion of one of the two outcomes large) is difficult and
requires independent (predictor) variables that strongly associated with the dependent (outcome)
variable.

58 / 62

http://cs229.stanford.edu/proj2016/report/LohSooXing-PredictingSexualOrientationBasedOnFacebookStatusUpdates-report.pdf
https://news.gallup.com/poll/234863/estimate-lgbt-population-rises.aspx


Fitted Values Revisited

What happens when the ratio of true-to-false increases (i.e. want to predict "rare" events)?

Let's simulate a dataset where the ratio of true-to-false is 10-to-1. We can also define the
distribution of the dependent variable. Here, there is moderate separation in the distributions.

test.df2 <- getSimulatedData(

    treat.mean=.6, control.mean=.4)

The multilevelPSA::psrange  function will sample with varying ratios from 1:10 to 1:1. It takes
multiple samples and averages the ranges and distributions of the fitted values from logistic
regression.

psranges2 <- psrange(test.df2, test.df2$treat, treat ~ .,

                     samples=seq(100,1000,by=100), nboot=20)

59 / 62



Fitted Values Revisited (cont.)
plot(psranges2)

60 / 62



Additional Resources

Logistic Regression Details Pt 2: Maximum Likelihood

StatQuest: Maximum Likelihood, clearly explained

Probability concepts explained: Maximum likelihood estimation

61 / 62

https://www.youtube.com/watch?v=BfKanl1aSG0
https://www.youtube.com/watch?v=XepXtl9YKwc
https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1


One Minute Paper

Complete the one minute paper:
https://forms.gle/qxRnsCyydx1nf8sXA

1. What was the most important thing you learned during this class?
2. What important question remains unanswered for you?

62 / 62

https://forms.gle/qxRnsCyydx1nf8sXA

