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What was the most important thing you
learned during this class?

## NULL

What important question remains
unanswered for you?

## NULL

One Minute Paper Results
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remotes::install_github('jbryer/DATA606')

library(DATA606)

shiny_demo('anova')

See also Pruzek & Helmreich (2010).
Elemental Graphics for Analysis of Variance
using the R Package granova.

Graphical Analysis of Variance
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http://moderngraphics11.pbworks.com/f/ElementalGraphics4ANOVA.RP+JH.pdf


Homework Presentations

7.21 Krutika Patel

8.26 Charles Ugiagbe
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SAT Scores

We will use the SAT data for 162 students which includes their verbal and math scores. We will
model math from verbal. Recall that the linear model can be expressed as:

Or alternatively as:

Where m (or ) is the slope and b (or ) is the intercept. Therefore, we wish to model:

y = mx + b

y = b1x + b0

b1 b0

SATmath = b1SATverbal + b0
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Data Prep

To begin, we read in the CSV file and convert the Verbal  and Math  columns to integers. The data
file uses .  (i.e. a period) to denote missing values. The as.integer  function will automatically
convert those to NA  (the indicator for a missing value in R). Finally, we use the complete.cases
eliminate any rows with any missing values.

sat <- read.csv('../course_data/SAT_scores.csv', stringsAsFactors=FALSE)

names(sat) <- c('Verbal','Math','Sex')

sat$Verbal <- as.integer(sat$Verbal)

sat$Math <- as.integer(sat$Math)

sat <- sat[complete.cases(sat),]
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Scatter Plot

The first step is to draw a scatter plot. We see that the relationship appears to be fairly linear.
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Next, we will calculate the means and
standard deviations.

( verbalMean <- mean(sat$Verbal) )

## [1] 596.2963

( mathMean <- mean(sat$Math) )

## [1] 612.0988

( verbalSD <- sd(sat$Verbal) )

## [1] 99.5199

( mathSD <- sd(sat$Math) )

## [1] 98.13435

( n <- nrow(sat) )

## [1] 162

Descriptive Statistics
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Correlation

The population correlation, rho, is defined as  where the numerator is the covariance

of x and y and the denominator is the product of the two standard deviations.

The sample correlation is calculated as 

The covariates is calculated as 

(cov.xy <- sum( (sat$Verbal - verbalMean) * (sat$Math - mathMean) ) / (n - 1))

## [1] 6686.082

cov(sat$Verbal, sat$Math)

## [1] 6686.082

ρxy =
σxy

σxσy

rxy =
Covxy

sxsy

Covxy =

∑
n

i=1
(Xi−

¯̄̄ ¯̄
X)(Yi−

¯̄¯̄
Y )

n−1
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Correlation (cont.)

cov.xy / (verbalSD * mathSD)

## [1] 0.6846061

cor(sat$Verbal, sat$Math)

## [1] 0.6846061

http://bcdudek.net/rectangles

rxy =

∑
n

i=1
(Xi−

¯̄̄ ¯̄
X)(Yi−

¯̄¯̄
Y )

n−1

sxsy
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http://bcdudek.net/rectangles


z-Scores

Calcualte z-scores (standard scores) for the verbal and math scores.

sat$Verbal.z <- (sat$Verbal - verbalMean) / verbalSD

sat$Math.z <- (sat$Math - mathMean) / mathSD

head(sat)

##   Verbal Math Sex    Verbal.z      Math.z

## 1    450  450   F -1.47002058 -1.65180456

## 2    640  540   F  0.43914539 -0.73469449

## 3    590  570   M -0.06326671 -0.42899113

## 4    400  400   M -1.97243268 -2.16131016

## 5    600  590   M  0.03721571 -0.22518889

## 6    610  610   M  0.13769813 -0.02138665

z =
y − ¯̄̄y

s
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Scatter Plot of z-Scores

Scatter plot of z-scores. Note that the pattern is the same but the scales on the x- and y-axes are
different.
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Or the cor  function in R is probably simplier.

cor(sat$Verbal, sat$Math)

## [1] 0.6846061

And to show that the units don't matter,
calculate the correlation with the z-scores.

cor(sat$Verbal.z, sat$Math.z)

## [1] 0.6846061

Correlation

Calculate the correlation manually using the z-score formula:

r <- sum( sat$Verbal.z * sat$Math.z ) / ( n - 1 )

r

## [1] 0.6846061

r =
∑ zxzy

n − 1
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Calculate the slope.

m <- r * (mathSD / verbalSD)

m

## [1] 0.6750748

m = r = r
Sy

Sx

Smath

Sverbal
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Calculate the intercept

Recall that the point where the mean of x and mean of y intersect will be on the line of best fit).
Therefore,

b <- mathMean - m * verbalMean

b

## [1] 209.5542

b = ¯̄̄y − m¯̄¯x =
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

SATmath − m
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

SATverbal
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Scatter Plot with Regression Line

We can now add the regression line to the scatter plot. The vertical and horizontal lines
represent the mean Verbal and Math SAT scores, respectively.
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Examine the Residuals

To examine the residuals, we first need to calculate the predicted values of y (Math scores in this
example).

sat$Math.predicted <- m * sat$Verbal + b

head(sat, n=4)

##   Verbal Math Sex    Verbal.z     Math.z Math.predicted

## 1    450  450   F -1.47002058 -1.6518046       513.3378

## 2    640  540   F  0.43914539 -0.7346945       641.6020

## 3    590  570   M -0.06326671 -0.4289911       607.8483

## 4    400  400   M -1.97243268 -2.1613102       479.5841
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Examine the Residuals (cont.)

The residuals are simply the difference between the observed and predicted values.

sat$residual <- sat$Math - sat$Math.predicted

head(sat, n=4)

##   Verbal Math Sex    Verbal.z     Math.z Math.predicted   residual

## 1    450  450   F -1.47002058 -1.6518046       513.3378  -63.33782

## 2    640  540   F  0.43914539 -0.7346945       641.6020 -101.60203

## 3    590  570   M -0.06326671 -0.4289911       607.8483  -37.84829

## 4    400  400   M -1.97243268 -2.1613102       479.5841  -79.58408
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Scatter Plot with Residuals

Plot our regression line with lines representing the residuals. The line of best fit minimizes the
residuals.
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Minimizing Sum of Squared Residuals

What does it mean to minimize the sum of squared residuals?

To show that  minimizes the sum of squared residuals, this loop will calculate the sum

of squared residuals for varying values of between -1 and 1.

results <- data.frame(r=seq(-1, 1, by=.05), 

                      m=as.numeric(NA),

                      b=as.numeric(NA),

                      sumsquares=as.numeric(NA))

for(i in 1:nrow(results)) {

    results[i,]$m <- results[i,]$r * (mathSD / verbalSD)

    results[i,]$b <-  mathMean - results[i,]$m * verbalMean

    predicted <- results[i,]$m * sat$Verbal + results[i,]$b

    residual <- sat$Math - predicted

    sumsquares <- sum(residual^2)

    results[i,]$sumsquares <- sum(residual^2)

}

m = r
Sy

Sx
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Minimizing the Sum of Squared Residuals

Plot the sum of squared residuals for different slopes (i.e. r's). The vertical line corresponds to
the r (slope) calcluated above and the horizontal line corresponds the sum of squared residuals
for that r. This should have the smallest sum of squared residuals.
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Regression Line with RSS
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Example of a "bad" model

To exemplify how the residuals change, the following scatter plot picks one of the "bad" models
and plot that regression line with the original, best fitting line. Take particular note how the
residuals would be less if they ended on the red line (i.e. the better fitting model). This is
particularly evident on the far left and far right, but is true across the entire range of values.

b.bad <- results[1,]$b

m.bad <- results[1,]$m

sat$predicted.bad <- m.bad * sat$Verbal + b.bad
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Example of a "bad" model
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Residual Plot

Next, we'll plot the residuals with the independent variable. In this plot we expect to see no
pattern, bending, or clustering if the model fits well. The rug plot on the right and top given an
indication of the distribution. Below, we will also examine the histogram of residuals.

ggplot(sat, aes(x=Verbal, y=residual)) + geom_point() + geom_rug(sides='rt')
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Scatter and Residual Plot, Together

In an attempt to show the relationship between the predicted value and the residuals, this
figures combines both the basic scatter plot with the residuals. Each Math score is connected
with the corresponding residual point.
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Histogram of residuals
ggplot(sat, aes(x=residual)) + geom_histogram(alpha=.5, binwidth=25)
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Calculate 
r ^ 2

## [1] 0.4686855

This model accounts for 46.9% of the variance math score predicted from verbal score.

R
2
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Prediction

Now we can predict Math scores from new Verbal.

newX <- 550

(newY <- newX * m + b)

## [1] 580.8453
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Using R's built in function for linear modeling

The lm  function in R will calculate everything above for us in one command.

sat.lm <- lm(Math ~ Verbal, data=sat)

summary(sat.lm)

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat)

## 

## Residuals:

##      Min       1Q   Median       3Q      Max 

## -173.590  -47.596    1.158   45.086  259.659 

## 

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)    

## (Intercept) 209.55417   34.34935   6.101 7.66e-09 ***

## Verbal        0.67507    0.05682  11.880  < 2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 71.75 on 160 degrees of freedom

## Multiple R-squared:  0.4687,    Adjusted R-squared:  0.4654 

## F-statistic: 141.1 on 1 and 160 DF,  p-value: < 2.2e-16
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head(cbind(sat.lm.predicted, 

           sat$Math.predicted), n=4)

##   sat.lm.predicted         

## 1         513.3378 513.3378

## 2         641.6020 641.6020

## 3         607.8483 607.8483

## 4         479.5841 479.5841

head(cbind(sat.lm.residuals, 

           sat$residual), n=4)

##   sat.lm.residuals           

## 1        -63.33782  -63.33782

## 2       -101.60203 -101.60203

## 3        -37.84829  -37.84829

## 4        -79.58408  -79.58408

Predicted Values, Revisited

We can get the predicted values and residuals from the lm  function

sat.lm.predicted <- predict(sat.lm)

sat.lm.residuals <- resid(sat.lm)

Confirm that they are the same as what we calculated above.
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Residuals - Implications for Grouping Variables

First, let's look at the scatter plot but with a gender indicator.
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Residual Plot by Gender

And also the residual plot with an indicator for gender.
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Histograms

The histograms also show that the distribution are different across gender.
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Grouping Variable

Upon careful examination of these two figures, there is some indication there may be a
difference between genders. In the scatter plot, it appears that there is a cluster of males
towoards the top left and a cluster of females towards the right. The residual plot also shows a
cluster of males on the upper left of the cluster as well as a cluster of females to the lower right.
Perhaps estimating two separate models would be more appropriate.

To start, we create two data frames for each gender.

sat.male <- sat[sat$Sex == 'M',]

sat.female <- sat[sat$Sex == 'F',]
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Descriptive Statistics

Calculate the mean for Math and Verbal for both males and females.

(male.verbal.mean <- mean(sat.male$Verbal))

## [1] 590.375

(male.math.mean <- mean(sat.male$Math))

## [1] 626.875

(female.verbal.mean <- mean(sat.female$Verbal))

## [1] 602.0732

(female.math.mean <- mean(sat.female$Math))

## [1] 597.6829
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sat.male.lm <- lm(Math ~ Verbal, 

                  data=sat.male)

sat.male.lm

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat.male)

## 

## Coefficients:

## (Intercept)       Verbal  

##    250.1452       0.6381

sat.female.lm <- lm(Math ~ Verbal, 

                    data=sat.female)

sat.female.lm

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat.female)

## 

## Coefficients:

## (Intercept)       Verbal  

##    158.9965       0.7286

Two Regression Models

Estimate two linear models for each gender.
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We do in fact find that the intercepts and slopes are both fairly different. The figure below adds
the regression lines to the scatter plot.

38 / 51



cor(sat.male$Verbal, sat.male$Math) ^ 2

## [1] 0.4710744

cor(sat.female$Verbal, sat.female$Math) ^ 2

## [1] 0.5137626

Let's compare the  for the three models.

cor(sat$Verbal, sat$Math) ^ 2

## [1] 0.4686855

The  for the full model accounts for approximately 46.9% of the variance. By estimating
separate models for each gender we can account for 47.1% and 51.4% of the variance for males
and females, respectively.

R
2

R
2

R
2
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Examining Possible Outliers

Re-examining the histogram of residuals, there is one data point with a residual higher than the
rest. This is a possible outlier. In this section we'll examine how that outlier may impact our
linear model.
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Possible Outlier

We can extract that record from our data frame. We can also highlight that point on the scatter
plot.

sat.outlier <- sat[sat$residual > 200,]

sat.outlier

##     Verbal Math Sex  Verbal.z   Math.z Math.predicted residual predicted.bad

## 162    490  800   F -1.068091 1.914735       540.3408 259.6592      716.9152
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(sat.lm <- lm(Math ~ Verbal, data=sat))

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat)

## 

## Coefficients:

## (Intercept)       Verbal  

##    209.5542       0.6751

(sat.lm2 <- lm(Math ~ Verbal, 

               data=sat[sat$residual < 200,]))

Possible Outlier (cont.)

We see that excluding this point changes model slightly. With the outlier included we can
account for 45.5% of the variance and by excluding it we can account for 47.9% of the variance.
Although excluding this point improves our model, this is an insufficient enough reason to do so.
Further explenation is necessary.

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat[sat$residual 

## 

## Coefficients:

## (Intercept)       Verbal  

##    197.4697       0.6926
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 with and without the outlier
summary(sat.lm)$r.squared

## [1] 0.4686855

summary(sat.lm2)$r.squared

## [1] 0.5013288

R
2
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More outliers

For the following two examples, we will add outliers to examine how they would effect our
models. In the first example, we will add an outlier that is close to our fitted model (i.e. a small
residual) but lies far away from the cluster of points. As we can see below, this single point
increases our  by more than 5%.

outX <- 1200

outY <- 1150

sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))

R
2
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(sat.lm <- lm(Math ~ Verbal, 

              data=sat))

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat)

## 

## Coefficients:

## (Intercept)       Verbal  

##    209.5542       0.6751

(sat.lm2 <- lm(Math ~ Verbal, 

               data=sat.outlier))

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat.outlier)

## 

## Coefficients:

## (Intercept)       Verbal  

##     186.372        0.715

Regression Models
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Scatter Plot
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summary(sat.lm)$r.squared

## [1] 0.4686855

summary(sat.lm2)$r.squared

## [1] 0.5443222

R
2
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(sat.lm <- lm(Math ~ Verbal, 

              data=sat))

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat)

## 

## Coefficients:

## (Intercept)       Verbal  

##    209.5542       0.6751

(sat.lm2 <- lm(Math ~ Verbal, 

               data=sat.outlier))

## 

## Call:

## lm(formula = Math ~ Verbal, data = sat.outlier)

## 

## Coefficients:

## (Intercept)       Verbal  

##    290.8915       0.5459

Outliers

Outliers can have the opposite effect too. In this example, our  is decreased by almost 16%.

outX <- 300

outY <- 1150

sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))

R
2
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summary(sat.lm)$r.squared

## [1] 0.4686855

summary(sat.lm2)$r.squared

## [1] 0.2726476

R
2
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One Minute Paper

Complete the one minute paper:
https://forms.gle/qxRnsCyydx1nf8sXA

1. What was the most important thing you learned during this class?
2. What important question remains unanswered for you?
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