
Foundation for Inference Part 2
DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

March 9, 2022



2 / 34



Data Project Proposal

Due October 31stish Select a dataset that interests you. For the proposal, you need to answer the
questions below.

Research question
What type of statistical test do you plan to do (e.g. t-test, ANOVA, regression, logistic regression, chi-squared, etc.)
What are the cases, and how many are there?
Describe the method of data collection.
What type of study is this (observational/experiment)?
Data Source: If you collected the data, state self-collected. If not, provide a citation/link.
Response: What is the response variable, and what type is it (numerical/categorical)?
Explanatory: What is the explanatory variable(s), and what type is it (numerical/categorical)?
Relevant summary statistics

More information including template and suggested datasets located here:
https://fall2021.data606.net/assignments/project/
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What was the most important thing you
learned during this class?

## NULL

What important question remains
unanswered for you?

## NULL

One Minute Paper Results
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Population Distribution (Uniform)
n <- 1e5

pop <- runif(n, 0, 1)

mean(pop)

## [1] 0.4990114
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Random Sample (n=30)
samp2 <- sample(pop, size=30)

mean(samp2)

## [1] 0.5086801

hist(samp2)
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Null Hypothesis Testing
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Hypothesis Testing

We start with a null hypothesis (  ) that represents the status quo.

We also have an alternative hypothesis (  ) that represents our research question, i.e. what
we're testing for.

We conduct a hypothesis test under the assumption that the null hypothesis is true, either
via simulation or traditional methods based on the central limit theorem.

If the test results suggest that the data do not provide convincing evidence for the alternative
hypothesis, we stick with the null hypothesis. If they do, then we reject the null hypothesis in
favor of the alternative.

H0

HA
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Hypothesis Testing (using CI)

: The mean of samp2  = 0.5 
: The mean of samp2   0.5

Using con�dence intervals, if the null value is within the con�dence interval, then we fail to reject
the null hypothesis.

(samp2.ci <- c(mean(samp2) - 2 * sd(samp2) / sqrt(length(samp2)),

               mean(samp2) + 2 * sd(samp2) / sqrt(length(samp2))))

## [1] 0.4001804 0.6171798

Since 0.5 fall within 0.4001804, 0.6171798, we fail to reject the null hypothesis.

H0

HA ≠
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Hypothesis Testing (using p-values)

pnorm(-.204) * 2

## [1] 0.8383535

x̄ ∼ N (mean = 0.49, SE = )
0.27

√30 = 0.049

Z = = = −.204081633
x̄ − null

SE

0.49 − 0.50

0.049
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Hypothesis Testing (using p-values)
DATA606::normal_plot(cv = c(.204), tails = 'two.sided')
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Type I and II Errors

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

fail to reject H0 reject H0

H0 true ✔ Type I Error

HA true Type II Error ✔

Type I Error: Rejecting the null hypothesis when it is true.
Type II Error: Failing to reject the null hypothesis when it is false.
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Hypothesis Test

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
in terms of the null and alternative hypotheses:

H0 : Defendant is innocent 
HA : Defendant is guilty

Which type of error is being committed in the following circumstances?

Declaring the defendant innocent when they are actually guilty

Type 2 error

Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 13 / 34



Null Distribution
(cv <- qnorm(0.05, mean=0, sd=1, lower.tail=FALSE))

## [1] 1.644854
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Alternative Distribution

pnorm(cv, mean=cv, lower.tail = FALSE)

## [1] 0.5
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mu <- 2.5

(cv <- qnorm(0.05, 

             mean=0, 

             sd=1, 

             lower.tail=FALSE))

## [1] 1.644854

Another Example (mu = 2.5)
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Numeric Values

Type I Error

pnorm(mu, mean=0, sd=1, lower.tail=FALSE)

## [1] 0.006209665

Type II Error

pnorm(cv, mean=mu, lower.tail = TRUE)

## [1] 0.1962351
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Shiny Application

Visualizing Type I and Type II errors: https://bcdudek.net/betaprob/
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Why p < 0.05?

Check out this page: https://r.bryer.org/shiny/Why05/

See also:

Kelly M. Emily Dickinson and monkeys on the stair Or: What is the signi�cance of the 5%
signi�cance level? Signi�cance 10:5. 2013.
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https://r.bryer.org/shiny/Why05/
http://www.acsu.buffalo.edu/~grant/5pcMarkKelley.pdf


Statistical vs. Practical Signi�cance

Real differences between the point estimate and null value are easier to detect with larger
samples.

However, very large samples will result in statistical signi�cance even for tiny differences
between the sample mean and the null value (effect size), even when the difference is not
practically signi�cant.

This is especially important to research: if we conduct a study, we want to focus on �nding
meaningful results (we want observed differences to be real, but also large enough to matter).

The role of a statistician is not just in the analysis of data, but also in planning and design of
a study.
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Bootstrapping
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Bootstrapping

First introduced by Efron (1979) in Bootstrap Methods: Another Look at the Jackknife.

Estimates con�dence of statistics by resampling with replacement.

The bootstrap sample provides an estimate of the sampling distribution.

The boot  R package provides a framework for doing bootstrapping:
https://www.statmethods.net/advstats/bootstrapping.html
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https://projecteuclid.org/euclid.aos/1176344552
https://www.statmethods.net/advstats/bootstrapping.html


Bootstrapping Example (Population)

De�ne our population with a uniform distribution.

n <- 1e5

pop <- runif(n, 0, 1)

mean(pop)

## [1] 0.4984271
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Bootstrapping Example (Sample)

We observe one random sample from the population.

samp1 <- sample(pop, size = 50)
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Bootsrapping Example (Estimate)
boot.samples <- numeric(1000) # 1,000 bootstrap samples

for(i in seq_along(boot.samples)) { 

    tmp <- sample(samp1, size = length(samp1), replace = TRUE)

    boot.samples[i] <- mean(tmp)

}

head(boot.samples)

## [1] 0.4577224 0.5202220 0.5106397 0.4871309 0.4624648 0.5007866
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Bootsrapping Example (Distribution)
d <- density(boot.samples)

h <- hist(boot.samples, plot=FALSE)

hist(boot.samples, main='Bootstrap Distribution', xlab="", freq=FALSE, 

     ylim=c(0, max(d$y, h$density)+.5), col=COL[1,2], border = "white", 

     cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)

lines(d, lwd=3)
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95% con�dence interval
c(mean(boot.samples) - 1.96 * sd(boot.samples), 

  mean(boot.samples) + 1.96 * sd(boot.samples))

## [1] 0.4164288 0.5837527
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Bootstrapping is not just for means!
boot.samples.median <- numeric(1000) # 1,000 bootstrap samples

for(i in seq_along(boot.samples.median)) { 

    tmp <- sample(samp1, size = length(samp1), replace = TRUE)

    boot.samples.median[i] <- median(tmp) # NOTICE WE ARE NOW USING THE median FUNCTION!

}

head(boot.samples.median)

## [1] 0.5125796 0.3676660 0.5125796 0.5404895 0.5125796 0.5404895

95% con�dence interval for the median

c(mean(boot.samples.median) - 1.96 * sd(boot.samples.median), 

  mean(boot.samples.median) + 1.96 * sd(boot.samples.median))

## [1] 0.3728934 0.6493538
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Review
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Review: Sampling Distribution
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Review: Sampling Distribution
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Review: Sampling Distribution

32 / 34



Review: Add Bootstrap Distribution
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One Minute Paper

Complete the one minute paper:
https://forms.gle/qxRnsCyydx1nf8sXA

�. What was the most important thing you learned during this class?
�. What important question remains unanswered for you?
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