Foundation for Inference Part 1

DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

March 2, 2022

One Minute Paper Results

What was the most important thing you learned during this class?

What important question remains unanswered for you?

Crash Course in Calculus

Crash Course in Calculus

There are three major concepts in calculus that will be helpful to understand:

Limits - the value that a function (or sequence) approaches as the input (or index) approaches some value.

Derivatives - the slope of the line tangent at any given point on a function.

Integrals - the area under the curve.

Source: @allison_horst

Source: <a>@allison_horst

Source: @allison_horst

DATA 606 Spring 2022

7 / 35

Source: @allison_horst

So: the <u>average slope</u> between ANY 2 POINTS on function f(x)separated by Δx is

 $M = f(x + \Delta x) - f(x)$

Source: @allison_horst

Source: @allison_horst

Source: @allison_horst I'M COMING OVER! if I get r<u>eally</u> close to you, then our average slope will be close to your EXACT slope! what. DX is Shrinking!

Function for Normal Distribution

$$f\left(x|\mu,\sigma
ight)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{\left(x-\mu
ight)^{2}}{2\sigma^{2}}}$$

Reimann Sums

One strategy to find the area between two values is to draw a series of rectangles. Given n rectangles, we know that the width of each is $\frac{2-0}{n}$ and the height is f(x). Here is an example with 3 rectangles.

Reimann Sums (10 rectangles)

Reimann Sums (30 rectangles)

Reimann Sums (300 rectangles)

As *n* approaches infinity we are going to get the *exact* value for the area under the curve. This notion of letting a value get increasingly close to infinity, zero, or any other value, is called the **limit**.

The area under a function is called the integral.

integrate(f, 0, 2)

0.4772499 with absolute error < 5.3e-15</pre>

DATA606::shiny_demo('calculus')

Normal Distribution

normal_plot(cv = c(0, 2))

pnorm(2) - pnorm(0)

[1] 0.4772499

R's built in functions for working with distributions

Foundation for Inference

Population Distribution (Uniform)

Random Sample (n=10)

samp1 <- sample(pop, size=10)
mean(samp1)</pre>

[1] 0.4818356

hist(samp1)

Random Sample (n=30)

samp2 <- sample(pop, size=30)
mean(samp2)</pre>

[1] 0.4161291

hist(samp2)

Lots of Random Samples

```
M <- 1000
samples <- numeric(length=M)
for(i in seq_len(M)) {
    samples[i] <- mean(sample(pop, size=30))
}
head(samples, n=8)</pre>
```

[1] 0.6152609 0.4635704 0.5176977 0.5371314 0.5354912 0.4833082 0.4613639
[8] 0.4991360

Sampling Distribution

hist(samples)

DATA 606 Spring 2022 Init time 27 / 35

Central Limit Theorem (CLT)

Let X_1 , X_2 , ..., X_n be independent, identically distributed random variables with mean μ and variance σ^2 , both finite. Then for any constant z,

$${\displaystyle \lim_{n o \infty}} P\left({\displaystyle rac{{ar X} - \mu}{{\sigma}/{\sqrt n}}} \le z
ight) = \Phi \left(z
ight)$$

where Φ is the cumulative distribution function (cdf) of the standard normal distribution.

In other words...

The distribution of the sample mean is well approximated by a normal model:

$$ar{x} \sim N\left(mean = \mu, SE = rac{\sigma}{\sqrt{n}}
ight)$$

where SE represents the **standard error**, which is defined as the standard deviation of the sampling distribution. In most cases σ is not known, so use s.

CLT Shiny App

library(DATA606)
shiny_demo('sampdist')
shiny_demo('CLT_mean')

Standard Error

```
samp2 <- sample(pop, size=30)
mean(samp2)</pre>
```

[1] 0.4105147

```
(samp2.se <- sd(samp2) / sqrt(length(samp2)))</pre>
```

[1] 0.04753127

Confidence Interval

The confidence interval is then $\mu \pm CV \times SE$ where CV is the critical value. For a 95% confidence interval, the critical value is ~1.96 since

$$\int_{-1.96}^{1.96} rac{1}{\sigma \sqrt{2\pi}} d^{-rac{(x-\mu)^2}{2\sigma^2}} pprox 0.95 \, .$$

qnorm(0.025) # Remember we need to consider the two tails, 2.5% to the left, 2.5% to the right.

.)

[1] -1.959964

(samp2.ci <- c(mean(samp2) - 1.96 * samp2.se, mean(samp2) + 1.96 * samp2.se))</pre>

[1] 0.3173534 0.5036760

Confidence Intervals (cont.)

We are 95% confident that the true population mean is between 0.3173534, 0.503676.

That is, if we were to take 100 random samples, we would expect at least 95% of those samples to have a mean within 0.3173534, 0.503676.

Confidence Intervals

```
ggplot(ci, aes(x=min, xend=max, y=sample, yend=sample, color=sig)) +
geom_vline(xintercept=0.5) +
geom_segment() + xlab('CI') + ylab('') +
scale_color_manual(values=c('TRUE'='grey', 'FALSE'='red'))
```


Complete the one minute paper: https://forms.gle/qxRnsCyydx1nf8sXA

1. What was the most important thing you learned during this class?

2. What important question remains unanswered for you?

