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What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results
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Crash Course in Calculus
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Crash Course in Calculus
There are three major concepts in calculus that will be helpful to understand:

Limits - the value that a function (or sequence) approaches as the input (or index) approaches some
value.

Derivatives - the slope of the line tangent at any given point on a function.

Integrals - the area under the curve.

4 / 35



Derivatives
Source: @allison_horst
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Function for Normal Distribution

f <- function(x, mean = 0, sigma = 1) {

1 / (sigma * sqrt(2 * pi)) * exp(1)^(-1/2 * ( (x - mean) / sigma )^2)

}

min <- 0; max <- 2

ggplot() + stat_function(fun = f) + xlim(c(-4, 4)) + 

    geom_vline(xintercept = c(min, max), color = 'blue', linetype = 2) + xlab('x')

f (x|μ, σ) = e
−1

σ√2π

(x−μ)2

2σ2
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Reimann Sums

One strategy to find the area between two values is to draw a series of rectangles. Given n
rectangles, we know that the width of each is  and the height is . Here is an example with
3 rectangles.

2−0
n

f(x)
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Reimann Sums (10 rectangles)
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Reimann Sums (30 rectangles)
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Reimann Sums (300 rectangles)
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As n approaches infinity we are going to get the exact value for the area under the curve. This
notion of letting a value get increasingly close to infinity, zero, or any other value, is called the
limit.

The area under a function is called the integral.

integrate(f, 0, 2)

## 0.4772499 with absolute error < 5.3e-15

DATA606::shiny_demo('calculus')

n → ∞
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Normal Distribution
normal_plot(cv = c(0, 2))

pnorm(2) - pnorm(0)

## [1] 0.4772499
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R's built in functions for working with distributions

See https://github.com/jbryer/DATA606Fall2021/blob/master/R/distributions.R 21 / 35
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Population Distribution (Uniform)
n <- 1e5

pop <- runif(n, 0, 1)

mean(pop)

## [1] 0.5006827
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Random Sample (n=10)
samp1 <- sample(pop, size=10)

mean(samp1)

## [1] 0.4818356

hist(samp1)
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Random Sample (n=30)
samp2 <- sample(pop, size=30)

mean(samp2)

## [1] 0.4161291

hist(samp2)
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Lots of Random Samples
M <- 1000

samples <- numeric(length=M)

for(i in seq_len(M)) {

    samples[i] <- mean(sample(pop, size=30))

}

head(samples, n=8)

## [1] 0.6152609 0.4635704 0.5176977 0.5371314 0.5354912 0.4833082 0.4613639

## [8] 0.4991360
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Sampling Distribution
hist(samples)
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Central Limit Theorem (CLT)

Let , , ...,  be independent, identically distributed random variables with mean  and
variance , both finite. Then for any constant ,

where  is the cumulative distribution function (cdf) of the standard normal distribution.

X1 X2 Xn μ

σ2 z

lim
n→∞

P ( ≤ z) = Φ (z)
X̄ − μ

σ/√n

Φ
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In other words...

The distribution of the sample mean is well approximated by a normal model:

where SE represents the standard error, which is defined as the standard deviation of the
sampling distribution. In most cases  is not known, so use .

x̄ ∼ N (mean = μ, SE = )
σ

√n

σ s
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CLT Shiny App
library(DATA606)

shiny_demo('sampdist')

shiny_demo('CLT_mean')
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Standard Error
samp2 <- sample(pop, size=30)

mean(samp2)

## [1] 0.4105147

(samp2.se <- sd(samp2) / sqrt(length(samp2)))

## [1] 0.04753127
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Confidence Interval

The confidence interval is then  where CV is the critical value. For a 95% confidence
interval, the critical value is ~1.96 since

qnorm(0.025) # Remember we need to consider the two tails, 2.5% to the left, 2.5% to the right.

## [1] -1.959964

(samp2.ci <- c(mean(samp2) - 1.96 * samp2.se, mean(samp2) + 1.96 * samp2.se))

## [1] 0.3173534 0.5036760

μ ± CV × SE

∫
1.96

−1.96

d
−

≈ 0.95
1

σ√2π

(x−μ)2

2σ2
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Confidence Intervals (cont.)

We are 95% confident that the true population mean is between 0.3173534, 0.503676.

That is, if we were to take 100 random samples, we would expect at least 95% of those samples to
have a mean within 0.3173534, 0.503676.

ci <- data.frame(mean=numeric(), min=numeric(), max=numeric())

for(i in seq_len(100)) {

    samp <- sample(pop, size=30)

    se <- sd(samp) / sqrt(length(samp))

    ci[i,] <- c(mean(samp),

                mean(samp) - 1.96 * se, 

                mean(samp) + 1.96 * se)

}

ci$sample <- 1:nrow(ci)

ci$sig <- ci$min < 0.5 & ci$max > 0.5
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Confidence Intervals
ggplot(ci, aes(x=min, xend=max, y=sample, yend=sample, color=sig)) + 

    geom_vline(xintercept=0.5) + 

    geom_segment() + xlab('CI') + ylab('') +

    scale_color_manual(values=c('TRUE'='grey', 'FALSE'='red'))
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One Minute Paper

Complete the one minute paper:
https://forms.gle/qxRnsCyydx1nf8sXA

1. What was the most important thing you learned during this class?
2. What important question remains unanswered for you?
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